[2] CRYSTALLOGRAPHY 19

[2] Introduction to Crystallography

By ROBERT M. SWEET

Introduction

The modern language of enzymology and molecular biology owes
" much of its sophistication to the success of X-ray diffraction. By 1965,
clever chemists had learned a lot about how enzymes worked. They had
found residues that lay close to one another in active sites and had pro-
posed mechanisms of action that were tested by kinetic and model stud-
ies. But no one really began to know how it all worked until three-dimen-
sional structures were known for several of those biochemical factories.
Today, students of biochemistry take more as dogma than as experimen-
tal findings the knowledge of molecular structure that is their heritage.
This knowledge has its value, of course. With rare exceptions (Mozart,
Einstein) the imagination of man is limited by what he already knows.
Therefore, we may presume that modern students of enzymology will be
able to ask questions we might not have thought of 20 years ago, when we
were ignorant of structure.

The winning of the ability to determine these structures was very
difficult. The workers who produced most of the results have stood firmly
on the shoulders of the scientists whose labors are described in the pre-
vious chapter. Figuring out how to determine protein structure required
some 40 years. Producing the structural information we have now has
been accomplished in 20. The purpose of this chapter is to introduce the
general scientific reader to some of the principles that are used in the
determination of molecular structure by X-ray diffraction techniques. Our
goal is to present the physical and mathematical basis of these techniques
and to provide an intuitive approach to understanding them. We refer you
to the comprehensive textbooks in the field for a more thorough treatment
of this background information. Titles which may be of use are Prorein
Crystallography by Blundell and Johnson and Sherwood’s Crystals, X-
Rays and Proteins. Brief summaries of the field can be found in Crystal
Structure Analysis: A Primer by Glusker and Trueblood, and in a chapter
from Vol. 13 of Methods of Biochemical Analysis by Holmes and Blow
entitled **The Use of X-Ray Diffraction in the Study of Protein and Nu-
cleic Acid Structure.”

We shall introduce you to the field in two steps. The first step is to
teach the fundamental principles of diffraction, and we do this in two
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different ways, in parallel. The first will show how waves constructively
and destructively interfere after they are scattered from atoms. The sec-
ond way will show that X-ray diffraction is mathematically equivalent to
the taking of the Fourier transform of the scattering object. The second
step is to describe the experimental procedures that a crystallographer
must perform in the determination of macromolecular structure. This will
be in the form of an approximate chronology of work that might be done
in the crystallographic laboratory.

Diffraction

Scattering of X Rays by Atoms. The X rays commonly used for dif-
fraction studies of biological molecules have a wavelength of 0.154 nm
and an energy of 8 keV. They are produced when a beam of electrons
driven by a potential of roughly 40,000 V strikes a copper anodc. These
high-energy electrons ionize the copper atoms, removing an inner shell
electron. X rays are emitted when a higher encrgy electron falls to fill the
void. The 0.154-nm radiation results when an L shell electron fills a hole
in the K shell of a copper atom. This choice of radiation is a compromise:
longer wavelength X rays allow investigation of larger molecules, damage
the specimen less, and scatter more strongly; shorter wavelength X rays
are absorbed less by the specimen and can allow solution of a structure to
higher resolution. In some large laboratories, electron synchrotrons or
storage rings are used to produce X rays for diffraction studies. In these
accelerators electrons travel at nearly the speed of light, their orbits being
bent to a circular path by powerful magnets. The radiation is produced in
the dircction of travel of the electrons, essentially because of the work
done on them by the bending magnets. Synchrotron radiation is polychro-
matic; therefore one may choose precisely the wavelength for use by
diffraction of the beam from a monochromator crystal. A major advantage
of the synchrotron sources is that they are two to three orders of magni-
tude more intense than conventional ones.

X rays are clectromagnetic radiation. When they pass by the clectrons
in an atom, the oscillating electric field of the X-ray photon or wave
causes the clectrons on the atom to oscillate, much like the sloshing of
coffee in a cup. These oscillating electrons serve as a new source of X
rays which are emitted in almost all directions. (A little thought will show
the reader that there are two directions in which no radiation can be
emitted when the incident radiation is polarized.) It happens that the
scattered radiation is precisely out of phasc with the incident radiation,
that is, it is phase-shifted by .
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Diffraction of X Rays by Atoms in a Lattice. A crystal has some
simple arrangement, or motif, of atoms repeated by reiterated translations
in one, two, or three directions. The lattice that describes the translational
repetition can be defined by single points chosen at an equivalent point in
cach motif. The simplest possible crystal is made of two atoms, and its
lattice consists of two points at the atomic centers.

When a single X-ray photon passes through a crystal, it diffracts from
the entire crystal as if it were a plane wave. This is an example of the
wave—particle duality explained by quantum mechanics. Thus, when a
photon strikes a lattice of two atoms, as in Fig. 1, it is scattered by both
atoms. Because of the constructive and destructive interference of waves,
there are special directions in which radiation scattered from these two
atoms will form a diffracted beam. One can see in Fig. | that the two
diffracted waves are in phase because the lower of the two waves travels
exactly one wavelength farther than the upper. Notice the phase shift of =
in the scattered waves. In general this path difference must be an integral
number of wavelengths for diffraction maxima to occur:

a sin o = nh, n=1,2,... (1)

The pattern of intensity which would be observed by an X-ray detector is
a series of ripples, starting at the direct beam and going off in both direc-
tions.

Diffraction and the Fourier Transform. If the elder Bragg was the
father of crystallography, then Jean Baptiste Joseph Fourier was surely
its godfather. Fourier was a bureaucrat in the government of Napoleon
Bonaparte and, among other services to his government, accompanied
Napoleon on his visit to Egypt and was an able administrator after their
return to France. He was an accomplished mathematician and made con-
tributions that were of great value to crystallographers. He showed that
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FiG. 1. Diagram of photon striking a lattice of two atoms.
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any periodic function can be approximated by sums of sine and cosine
functions whose wavelengths were integral fractions of this periodicity.
He also devised the technique we now know as the Fourier transform,
which again involves sums of trigonometric functions, and which trans-
forms functions between coordinate systems with different dimensional-
ity. The Fourier transform is a precise mathematical description of the
physical phenomenon of diffraction, and therefore it is tremendously use-
ful to us. '

The one-dimensional Fourier transform of some function f{x) is

F(h) = # j_mf(x)()”'-" dx (2)

If f{x) exists in ordinary space, defined by x, then F(h) exists in reciprocal
space, defined by the variable 4. Because the exponent must be dimen-
sionless, & must have dimensions of reciprocal distance.

The beauty of Fourier’s transform is that having gotten there, one can
get back again with

ftx) = —‘\/12_17 J:m Flh)e ™ dh (3)

Notice several features of these two transformations. First, both contain a
complex exponential that yields the trigonometrics mentioned above.
Second, the principal difference between them is the sign of the exponent.
And third, readers who still remember college calculus can prove that the
second follows from the first.

We may now use this transform to calculate an expression for diffrac-
tion from a two-atom lattice. (I refer you to Sherwood’s book for a thor-
ough treatment.) If we represent each atom by an appropriate & function,
that is, we make the atom a point scatterer of X rays, we get that

F(h) = 2 cos 2Zha 4)

F(h) is the amplitude (square root of the intensity) of diffraction and « is
the spacing between scatterers. A definition of 4 awaits our discussion of
the work of the Braggs. Notice, however, that this function is like the
array of ripples that we expected.

Diffraction from a Two-Dimensional Lattice. In our discussion of dif-
fraction from a one-dimensional lattice, we arranged for the incident beam
to be perpendicular to the line of atoms. Now we shall show how to
calculate conditions for diffraction for any beam that is incident on a two-
dimensional lattice of atoms. The situation we shall consider is shown in
Fig. 2.
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incident X rays

F1G. 2. Diffraction from a two-dimensional lattice.

For simplicity we have chosen a rectangular lattice. The lattice spac-
ing is a in the horizontal and b in the vertical directions. Paralle] beams L
2, and 3 approach the crystal at angle . We have drawn a number of wave
fronts as dotted lines at points where one or another of the waves strikes
an atom. We place the same condition on the beams here as in the two-
atom case: for diffraction to occur, the path length difference between any
two beams must be an integral number of wavelengths. In studying this
drawing, note that it has been carefully made, including the phase shift of
7 on scattering, to show the path length differences. These differences
between beams 1 and 2 and between beams 2 and 3 are, respectively,

ptqg=bsiny + bsiny’ = nx
S —r=acosy —acosy =mh

)

Now we construct a “‘reflecting’ plane which makes angle # with both

incident and diffracted beams. This plane lies at angle « from the horizon-

tal axis. We can now redefine ¢ and ' in terms of # and «, as follows:
U =0- a, Y =60+ « (6)

Finally, if we substitute these values into the equations above and rear-
range, we are left with a remarkably simple equation which constitutes an
important condition for diffraction:

tan « = mb/na (7)

In this example m = 1 and n = 2 and we have drawn the reflecting plane to
pass through the appropriate two atoms in the lattice so that this expres-
sion holds true. Planes of this sort, that pass through two lattice points (or
three in a three-dimensional lattice), or are parallel to planes that do, are
known as General Lattice Planes. These planes have useful algebraic
properties which we shall discuss later.
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But first, we shall place yet another set of constraints on diffraction
from a lattice. We have shown that diffraction can be treated as reflection
from general lattice planes, but have placed no constraints on the reflec-
tion angle 6. The following derivation is similar to that which sent the
Braggs on their way and led to the founding of the science of X-ray
diffraction crystallography.

Consider two general lattice planes, as in Fig. 3, with interplanar
spacing d, and incident and reflected beams of X rays that make angle 6
with these planes. As before, we require that the path length difference
between the two rays be an integral number of wavelengths, and we arrive
at Braggs’ Law:

#nAh = 2d sin 6 (8)

Braggs’ law does not tell us everything we need to know about diffraction.
Coupled with the idea of general lattice planes, it tells us only about the
geometry of diffraction, but it says nothing about the relation between
diffraction and the way the atoms of the crystal are arranged within its
repeating units. The Fourier transform does this. But before we see how
the Fourier transform of the crystal is related to Braggs’ law, we must first
learn a bit more about general lattice planes and the ways they can be
represented.

Representation of Lattice Planes. General lattice planes are described
by sets of general indices. The smallest unit of a crystal that is repeated
by translation alone is called the unif cell. We often draw unit cells with
lattice points at their corners. When general lattice planes are constructed
in a unit cell, the indices which describe those planes are the number of
segments into which the planes cut each of the unit cell edges. An equiva-
lent definition is that the indices are reciprocals of the fractional lengths
into which unit cell edges are cut by the planes. Examples appear in Fig.
4. The sign conventions are as follows. When the plane nearest a lattice
point cuts two axes that go both in the positive or both in the negative
direction, the two corresponding indices have the same sign. When the

F1G. 3. Diagram of general laltice planes showing interplaner spacing and angles of
reflectance and incidence.
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F1G. 4. Representation of lattice planes.

plane cuts axes that go in directions with opposite signs, the indices have
opposite signs. A set of indices can be multiplied by —1 and still represent
the same set of planes.

The Sphere of Reflection and Reciprocal Space. P. P. Ewald noticed a
geometrical simplification of Braggs’ law that links this law to the Fourier
transform and provides a simplified way of looking at general lattice
planes.

Notice first, as in Fig. 5, that if the Bragg reflection angle is 0 then the
total deflection angle for diffracted X rays must be 26. Let us then place
this figure, an intersection of beams with a plane, at the center of a sphere,
known as the Ewald sphere, that has as its radius the reciprocal of the
wavelength of the radiation. Then one can make the construction shown
in Fig. 6. One can sec immediately that this figure follows the rule

sOA/(1/N) = sin @ or A = (2 sin )/0OA (9)
If we substitute OA = 1/d, we obtain
A =2dsin 0 (10)

which is Bragg’'s law with n = 1.
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)/

Fi1G. 5. Diagram of reflection and deflection angles.

Significant features of this construction are first that the chord OA is
perpendicular to the reflecting plane, and second that when we define its
length to be the reciprocal of the distance between planes which will
cause diffraction at angle 8, Braggs’ law is obeyed. This suggests that in a
crystal each set of general lattice planes (hkl), with spacing d, might be
represented by a vector s,y that is perpendicular to the planes and has
length which is |syy| = 1/du. The vectors sy define the mathematical
space with dimensions of reciprocal distance that we know as reciprocal
space.

Reciprocal space, the reciprocal lattice (that is, the set of points de-
fined by all of the vectors s;), and the Ewald sphere are a remarkably
useful heuristic tool for the crystallographer. He can think about diffrac-
tion in simple geometric terms as involving the intersection of a point with
a sphere rather than having to think about reflecting planes, their spac-
ings, and the angles they make with incident and diffracted rays. In Fig. 6,
when point A, which represents vector s, for the plane we have chosen,

a|-—=

F1G. 6. Ewald sphere.
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touches the Ewald sphere, Bragg’s law is obeyed and diffraction occurs.
Rotating the crystal, so that the angle with the incident beam is no longer
6, will also move A away from the the surface of the sphere since s, is
perpendicular to the plane (hkl). Therefore, Braggs' law will not be
obeyed and no diffraction will be observed.

[t is easy to define the reciprocal lattice vector s, to be perpendicular
to the planes (/kl) and to have length s,y = 1/dyy:

Sh = ha* + kb* + [¢* (] 1)

The principal reciprocal space vectors a*, b*, and ¢* are defined, in terms
of the *‘real space’” vectors or unit cell principal axes, as

b X ¢ . €Xa «_ axXbh
T axb-o b_axb-c‘ C Taxb-c (12)

One can use the reciprocal lattice vector sy, to calculate useful parame-
ters for the crystal. For example, one can easily calculate the spacings for
a particular set of lattice planes. For the case where the angle between
unit cell edges a and ¢ is unconstrained (call it ) but both a and ¢ are
perpendicular to b, we can readily derive an expression for dy:

dhk.f = (Shk.’ . sh“)flﬂ — (h2a=§=2 + k?b*Z + [2('*2 + hla-‘kcﬁ: cos !8*)7”2

(B* =m =)
. be B I o G |
4" = abe cos(B — 90°  asin B’ b =% € 7 csin B (13)
N h? k2 /2 Al cos B\~'2
s = (az sin® 8 Tr Tt e B  acsin? ,8>

Therefore, the concept of the reciprocal lattice and Ewald’s sphere of
reflection are sufficient to provide us with a thorough geometrical descrip-
tion of X-ray diffraction. For a crystal with any particular unit cell dimen-
sions one can define the set of vectors sny that will determine the recipro-
cal lattice for that crystal. The conditions for diffraction from any
particular set of planes are only that the crystal be oriented so that the
reciprocal lattice point corresponding to those planes touches the Ewald
sphere.

After brief digression to show how the reciprocal lattice and the Ewald
sphere play a role in diffraction experiments, we shall return to show how
Braggs’ law and the diffraction pattern are related to the Fourier trans-
form of a crystal.

The Nature of Diffraction from Crystals. In principle we understand
how diffraction might actually occur from a crystal placed in a beam of
monochromatic X rays. How does it really work and how is it used?
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Notice first that if the crystallographer is to sample diffraction from all .
possible sets of lattice planes he must bring the reciprocal lattice points
for all these planes into contact with the Ewald sphere. To do this, he
must move the crystal in the beam. Martin Buerger devised an elegant
technique for the photography of a diffraction pattern. He developed a
camera that moves the crystal in the beam in a precessional motion. This
motion rocks single planes of points in the reciprocal lattice through the
Ewald sphere. If a metal screen with an annular slit is placed so that it
precesses with the crystal and if the film is made to precess about its
center point as well, as undistorted image of a single plane of reciprocal
space can be recorded on the X-ray film.

In Fig. 7 you can see a diffraction photograph taken from a crystal of
the protein phycocyanin with the use of a Buerger precession camera.
This is the image of a single plane in the reciprocal lattice for this crystal,
displayed on a film. Each reciprocal lattice point is represented by a spot
of blackened silver grains. The darkness of the spot is proportional to the
intensity of the X rays reflected from the set of planes described by that
particular reciprocal lattice point.

There are several features one should notice about this photograph.
First, as advertised, the Buerger camera produces reflections or diffrac-

Fia. 7. Diffraction photograph of phycocyanin.
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tion maxima that lie on the film along the straight lines of a lattice. The
distances between the spots on the lines are proportional to the reciprocal
lattice spacings a*, etc., and these important crystal parameters can be
measured directly from a precession film such as this. Second, there is a
wide range of intensities in the diffraction maxima that have been re-
corded. This is because these intensities are determined by the Fourier
transform of the contents of the phycocyanin unit cell, sampled at the
points that are shown. More directly, while the arrangement of spots on
the film tells us about the size and shape of the crystal unit cell, only their
intensities can tell us about the arrangement of atoms in the crystal. The
effort to discover how this arrangement of atoms is embedded in these
intensities occupies much of the lives of crystallographers and is the
subject of several of the chapters that follow. Third, one readily notices
that this photograph has striking symmetry. In particular, the pattern of
intensities can be put back on itself by a rotation of the photograph by
one-sixth of a rotation or by 60°.

The symmetry of this photograph shows much about the total symme-
try of intensities in the entire reciprocal lattice for this crystal. One can
readily interpret the symmetry of the reciprocal lattice to deduce the
symmetry of the molecular arrangement inside the unit cell. This volume
will not deal at all with this aspect of crystallography; however the reader
can find a comprehensive and comprehensible discussion of crystal sym-
metry in Martin Buerger’s Elementary Crystallography.

There are numerous other techniques for the measurement of diffrac-
tion intensities, that is, for the sampling of reciprocal space. One of the
simplest to understand is use of the single-crystal diffractometer (see
Wyckoff [24], this volume, for an exhaustive discussion). On this instru-
ment, a diagram of which appears in Fig. 8, a crystal can be manipulated
so that any reciprocal lattice point one chooses can be made to touch the
Ewald sphere in the horizontal plane. When the detector is placed at the
proper diffraction angle 20, it can measure the intensity of diffracted rays.
By this technique one can often measure the intensity of one reflection per
minute on a computer-controlled instrument. A difficulty with this device
is that it measures reflections only one at a time, and geometric con-
straints make it difficult to use with very finely sampled reciprocal lat-
tices, that is, with very large unit cells.

A technique which suffers neither of these problems is rotation pho-
tography, described in some detail in The Rotation Method by Arndt and
Wonacott and [19], this volume. Here we use the simplest possible geom-
etry: a crystal is mounted in the X-ray beam and a flat piece of X-ray film
in a light-tight cassette is placed a short distance away, perpendicular to
the beam. The crystal is rotated through an axis perpendicular to the




30 INTRODUCTION [2]

Source

Specimen Detector

FiG. 8. Diagram of single-crystal diffractometer.

beam through only a small angle, say 1-5°, so that reflections do not
superimpose one another on the film. In Fig. 9 appears a *‘rotation photo-
graph’’ of another crystal of phycocyanin. Here the crystal was rotated
through 3.5° so that regions of several reciprocal lattice planes were swept
a short way through the Ewald sphere. The hexagonal arrangement of
spots can be seen on the several “‘lunes’ that appear on the photograph.
Each of these continuous lunes corresponds to part of a single plane in the
reciprocal lattice.

The Sampled Fourier Transform. We now need to understand how the
arrangement of molecules in a crystal is manifested in a diffraction pat-
tern, such as those in Figs. 7 and 9. To do this, we return to the idea of the
Fourier transform. For simplicity we choose a simple object to represent
the pattern of molecules in a crystal’s unit cell. We shall use the *‘top hat™’
function (Fig. 10), which, also for simplicity, we define in one-dimen-
sional space. The Fourier transform of this function is easily calculated as
being

F(h) = (2b/h) sin ah (14)

a function that can be plotted as in Fig. 1.

Returning to our analogy of molecular crystals, Fig. 11 shows the
transform of the contents of a single unit cell from a crystal. Now we
place the object into a crystal, that is, we repeat it many times in Fig. 12,
with each repetition being equally spaced from the last. Again we can
calculate the transform of this repetitive pattern, and we find that it is a
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FiG. 11. Plot of Fourier transform of the contents of a single unit cell from a crystal.

series of equally spaced spikes, with spacings that depend upon the recip-
rocal spacing between the objects in the crystal and with amplitudes that
trace out the original transform of the object. This transform is plotted in
Fig. 13. We say that the transform of the repeated object (the top hat) is
“sampled’’ at the spikes of the crystal transform. We also can see that
when the objects are placed far apart, the transform will be finely sam-
pled; when they are close, the sampling will be coarse.

Notice that the sampling of the transform occurs at points not unlike
those in the reciprocal lattice. Indeed it is this observation that completes
the connection from Bragg diffraction, the Ewald sphere, and the recipro-
cal lattice to the idea that the diffraction pattern simply represents the
Fourier transform of the crystal. As #, the argument of F(h), has dimen-
sions of reciprocal distance, it also serves to measure the reciprocal lat-
tice. The reciprocal lattice points, each representing a Bragg plane from
which reflection occurs, are the same points that have nonzero values for
the transform of a repetitive crystal.

Now let us take the next logical step and see how, if we know the
structure of the molecules in the unit cell, we can calculate the value of
the transform as it is sampled at each reciprocal lattice point.

The Structure Factor and Its Phase. How does one use mathematical
notation to represent electromagnetic radiation? We say that the oscillat-
ing electric field that accompanies an X-ray photon has a wavelength, an

o —

—2a —

FiG. 12. Repetition of object within a crystal.
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FiG. 13. Plot of Fourier transform of repetitive pattern.

amplitude, and a phase relative to other waves. At any instant the electric
field £ vaires sinusoidally with distance as in Fig. 14. We call the argu-
ment of this sine function the phase angle. The origin from which this
phase is calculated is really arbitrary, but it must be the same for all waves
considered together. This function has the form

A(x) = Ap cos(2mx/A) (15)

The phase of this wave, relative to that at the origin, is 2x/A. How might
we represent a wave’s amplitude and phase? One could simply use two
numbers, the amplitude A, and the phase angle ¢. These two numbers are
easily graphed in polar coordinates such as in Fig. 15. Notice that the
wave is then easily represented as a point on the graph. Another way to
represent a point on a graph is in terms of its horizontal and vertical
components A, and A;. Yet another is to represent it as a single complex
number, having as its real component the horizontal distance to the point
and as its imaginary component the vertical distance. This ability to use a
single complex number to represent a wave’s amplitude and phase is
especially useful because there are several interchangeable ways to repre-
sent the complex number. The following are all equivalent, with & being
complex and the A values and ¢ being real.

e =A + iA; = A exp(id) (16)

! /\ /\
i
[(¢]

FiG. 14. Cosine function of electric field versus distance.
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FiG. 15. Plot of amplitude (A) versus phase angle (¢).

Another value of this notation is that we can represent the interference
among waves as the sum of the complex numbers which describe those
waves. As an example, let us evaluate the result of interference between
three waves with arbitrary amplitudes and phases. We can see in Fig. 16
that whether we sum the three waves, the vectors, or the complex num-
bers we arrive at the same result.

We now want to calculate an expression, which we shall call the
structure factor, that represents the wave reflected from a single set of
Bragg planes in a crystal. We know from the discussion above that this
structure factor is the value of the Fourier transform of a single unit cell,
evaluated at one of the sampling points that arise from the crystal repeti-
tion. These sampling points are reciprocal lattice points.

How do we evaluate the structure factor? Let us extend to three
dimensions the expression we defined earlier for the one-dimensional
Fourier transform, and at the same time introduce some crystallographic
notation. The Fourier transform of a single unit cell is

| -
F(sp) = Voo f p(r) exp(2misyy - 1) dr (17)

where dr is volume element. Since we want this transform to represent
diffraction of X rays, and since we know that the X rays are scattered by
the electrons on the atoms of the structure, we let p(r) be the density of
clectrons at the point represented by the vector r. We define r as xa + yb
+ z¢, where x, v, and z are dimensionless fractional coordinates within the
unit cell. We then have that s,y -r = hAx + ky + [z, a result of the
properties of the real and reciprocal lattice vectors. Finally we notice that
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F1G. 16. Representation of result of interference between waves.

we can obtain the integral over the entire unit cell by simply performing a
summation over the atoms in that cell.
This gives us the common expression for the structure factor:

Fug = 2, fexpl2mithx; + ky; + 1z)] (18)

atoms

where f; is the “‘scattering power’ of each atom, Xj, Vi, z; are its coordi-
nates, and we have dropped the factor 1/\V27.

We can show that this is correct. The structure factor for a single atom
is

Suk = [ exp2miChx; + ky; + 1z)]
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FiG. 17. Two-dimensional unit cell.

where the phase angle is 2m(hx; + ky; + Iz;). Does this makes sense? We
can place atoms in a unit cell with the lattice planes (hkl) drawn in and see
if the phases calculated by this expression are correct. In Fig. 17 we have
a two-dimensional unit cell with the (3,2) planes in place and several
atomic positions marked. Braggs’ law requires that for diffraction to oc-
cur, the phases of the waves scattered from any two atoms must be equal
when both lie on any one of the lattice planes in question. For example,
we calculate that the phase of scattering from atom 1 at (2/3. 0) is 27(3 - 2/
3+2:0)=47 =0, and that foratom2 at (0, 1/2)is27(3 -0+ 2 - 1/2) =
2w = 0. We can see that the phase of scattering from atom 3, which lies
midway between two planes at (1/3, 1/4), should be 7r. This turns out to be
the case since 273 - 1/3 + 2 - 1/4) = 37 = 7.

Coming to Focus; Regenerating the Image. Recall what we have
learned. Starting with very simple physical ideas, the scattering of X rays
by atoms and the interference of scattered rays, we have built up a rather
complete picture of the way X rays are diffracted from crystals. We
understand the geometry of diffraction and can even calculate the ampli-
tude and phase of the diffracted rays. What remains is to see how this
information might be used to reconstruct the structure of the crystal.

Let us take our cue from Fourier. He showed that any periodic func-
tion can be approximated by a sum of trigonometric functions. For exam-
ple, Fig. I8 shows a function that is periodic with a repeat distance of a.
The “*Fourier sum” which could approximate this function is

) = >, (A, cos 2wj§ + B; sin 27é %) (19)

=0

The coefficients A; and B, are real. This function g(x) will come closer and
closer to the true shape of f{x) as n, the number of terms included in the
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Fi1G. 18. Periodic function.
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sum, gets larger. In Fig. 19 you can see that this is so. The waves repre-
sented on the left are shown summed along the right. The more waves
used, the more nearly the sum approaches the shape of the periodic
function in Fig. 18.

We have a periodic function to represent: the electron density in a
crystal. It is periodic in three dimensions over distances that arc the
lengths of the principal axes of the crystal unit cell. Let us write a Fourier
sum that could approximate it. Here we shall use a slightly different form
of the Fouricr sum. We shall write the function in three dimensions, usc a
complex exponential to represent the trigonometrics, allow the coefficients

n Ay v f, Zf,
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Fi1G. 19. Summation of waves approaches the shape of the periodic function.
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to be complex, and finally sum over all negative and positive values of the
indices. The function we want is

p(x,y,2) = > > > Cuwr expl=2mi(h'x + k'y + I'7)]  (20)
hW=—w k' g
We can evaluate the complex coefficients Cj4p by use of a standard
mathematical trick. We start by rewriting the structure factor, in a slightly
different but recognizable way:

Fuu = fv p(x,y,z) exp[+2wilhx + ky + [2)] dV (21

Now we substitute Eq. (20), the Fourier sum for electron density
p(x,y,z,), into this expression and simplify the result. What we find is that
the complex coefficients Cyy = F/(volume of unit cell). This then gives
us the correspondence between the complex structure factor and the real
electron density in the crystal, the Fourier electron density function:

] w
p(x,y,z) = v E 2 2 Fuexpl—2milhx + ky + [2)] (22)
/

h=== k

Orie can compare these Egs. (21) and (22) to Egs. (2) and (3), written
during our first mention of Fourier, and see that the diffracted waves and
the structure are Fourier transforms of one another.

Calculation of electron density is a simple computational chore; math-
ematicians have devised a technique called the *‘fast” Fourier transform
in which the summation above is factored in a way that decreases sub-
stantially the number of calculations to be made. Something missing from
our discussion, however, is a method for determining the phase of the
complex structure factor Fjy.

Phase Calculation: The Isomorphous Replacement Method. One of
the most important contributions Perutz and his co-workers made to pro-
tein structure determination was to develop this method. It depends upon
the slight perturbation that is caused by a few very heavy atoms being
bound to the protein. When the binding of the heavy atoms causes no
substantial changes to the crystal structure, the structure is said to be
isomorphous, and the crystal with heavy atom bound is an isomorphous
heavy-atom derivative of the native crystal.

Let us preview the way the method works before we examine the
details. First one measures diffraction data for the native protein and for
one or more isomorphous heavy-atom derivatives. Then one determines
positions of the heavy atoms in the crystal. Doing this depends upon the
fact that a hypothetical diffraction pattern from the structure that contains
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the heavy atoms alone is very similar to the differences between the
diffraction patterns from a native protein crystal and its heavy-atom de-
rivative. As a result, many of the same techniques that are used to solve
structures with only a few atoms can be used 1o locate the heavy atoms in
a protein structure; only here the structure factors used are the differ-
ences between the two sets of measured structure factors. These tech-
niques usually include the use of the Patterson function, a calculation that
results in a knowledge of the vectors between atoms in the structure.
Determination of the positions of several atoms from knowledge only of
the vectors between them is often a problem of exquisite complexity.
Other techniques that are sometimes used are the **direct methods’ of
structure determination. Here the statistical relationships among the am-
plitudes of structure factors can be used to place constraints on their
phases. When the methods are applied to the differences between diffrac-
tion patterns, the result is the structure of the constellation of heavy
atoms.

After the positions of the heavy atoms have been found, these posi-
tions are used in the calculation of structure factors for the heavy atoms
alone. As you will see, these structure factors place constraints on the
possible values of the phases for the native structure factors.

Recall that the structure factor is a sum of terms, one for each atom
in the structure. If the protein atoms in the crystal are not perturbed by
the binding of heavy atoms, the structure factor for a heavy-atom deriva-
tive of a protein crystal is simply that of the native protein with that for
the heavy atoms added on:

Fey = Fp + fy (23)

Here Fpy is the structure factor for the heavy-atom derivative of the
parent protein, Fpis that for the parent, and fy is that for the heavy atoms
alone. This equation involving complex numbers represents a triangle in
the complex plane (see Fig. 20). Of course, one does not know the phase
of Fp or Fpy, but only the amplitudes |Fp| and |Fpy| and the phase and
amplitude of fy. As a result, this triangle can be drawn in two possible
ways consistant with the data, as in Fig. 21, leaving one with a 2-fold
ambiguity for the phase of Fp.

One normally resolves this ambiguity by performing the whole set of
measurements and calculations again for at least one more heavy-atom
derivative. One hopes that a second derivative will have phase indications
close to only one of those from the first. Statistical methods, worked out
by Blow and Crick, are used to compare the various indications for the
phase and to choose one which will minimize the errors in the final elec-
tron density map.
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FiG. 20. Plot of the structure factor.
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FiG. 21. Plot of 2-fold ambiguity for the phase of F,.
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Practicing Crystallography

From the biochemist’s perspective, the crystallographer’s chore must
seem a long and complicated process. Acknowledging that this is true
(which I do) does not make it simpler. It will pay, however, to show that a
complete project is a serial sequence of steps whose only dependence
upon each other is that they be performed carefully and in the proper
order. Very briefly, these steps are

. Growth of large, perfect crystals and preliminary characterization
of the crystals and their diffraction pattern.

2. Preparation of heavy-atom derivatives.

3. Measurement and processing of diffraction data.

4. Calculation of phases for Fourier coefficients.

5. Interpretation of electron density maps and refinement of molecu-
lar models.

6. Analysis of the structure.

These items all are treated in the chapters that follow in this volume.
Let us preview briefly what we shall find.

Crystal Growth and Characterization. In modern times one has access
to a sophisticated arsenal of protein purification techniques, such as ion-
exchange and gel-exclusion chromatography plus preparative-scale gel
electrophoresis and isoelectric focusing. One forgets that a major purifica-
tion tool of the early protein chemists, many of whom started life as
organic chemists, was crystallization. Even now, some primeval instinct
provides a thrill of satisfaction to the modern biochemist when he sees the
opalescent sheen of microscopic crystals in a swirled flask of precipitated
protein.

The conditions for growth of large crystals for X-ray diffraction are
little different from those that produce these “‘biochemist’s™ crystals.
One need only provide a pure protein and add to it, under the proper
conditions, a suitable precipitant and a pinch of patience, and crystals
may form. Much of the crystallographer’s burden is to find these proper
conditions and the proper precipitant. One must choose the correct pH,
temperature, and protein concentration. One may select precipitants such
as salts, which cause protein to crystallize because of hydrophobic inter-
actions, or organic liquids, such as alcohols, which strengthen electro-
static interactions between protein molecules. In addition, one may need
to worry about special conditions, such as the presence of allosteric effec-
tors, that will favor one particular conformation for the molecule.

Section 1I of this volume discusses many of these considerations. As a
testament to the parsimony of many crystallographers, who would rather
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spend their time thinking about molecular structure than preparing pro-
tein, many of the chapters in that section concern methods to grow crys-
tals with the smallest possible quantity of material.

Once crystals have been grown, they require a rather thorough analy-
sis before one can embark upon a full structure determination. Several
things must be learned.

I. What is the size of the crystallographic unit cell? What 1s its sym-
metry? Both of these are determined by scrutiny and measurement of the
diffraction pattern.

2. What form does the molecule adopt in the crystal? How many
molecules occupy each unit cell? A number of factors will help to answer
these questions. Among them are knowledge of the crystal density, deter-
mination of which is discussed in Section 111, and knowledge of the size
and symmetry of the unit cell and of possible subunit structure in the
molecule.

3. How accurately may one hope to learn the structure? Is this a
tractable problem? These questions depend upon the quality of the dif-
fraction pattern and upon one’s ability to measure the diffraction data in
practice. They also depend upon the stability of the crystals in the X-ray
beam.

Preparation of Heavy-Atom Derivatives. If crystal growth is an art,
this task involves alchemy. Although there are inspired exceptions, varia-
tions are usually played on only a few themes. Heavy metals may be
bound to the protein before crystals are grown, but more often the heavy-
metal compounds are allowed to diffuse into the crystals from solutions in
which the crystals are soaked. A number of compounds, for example
many containing Pb or Hg, bind tightly to the free thiol on cysteine.
lodine will react with tyrosine. Beyond this, one can find a sizable grab-
bag of coordination compounds of Pt, Au, U, etc., that fix themselves to
polar or ionic sites on proteins, and even a few, such as dimethyl mer-
cury, that bind in hydrophobic pockets. The process is very tedious, and
occasionally a little art, say in the design of a heavy-atom-labeled mimic
of a substrate, will save a lot of alchemy.

Measurement of Diffraction Data. As we have mentioned in the first
half of this chapter, one may measure diffraction intensities by photo-
graphic means, a process that has changed little over decades, or by use
of electronic detectors, a field that promises to grow rapidly in the future.

As with all physical mcasurements, great care must be taken in the
collection of X-ray data. One must minimize systematic and random error
in the measurements. One must think hard about sources of systematic
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error—nonuniformity in the detector or X-ray source, absorption of X
rays by the specimen, or decay of the specimen in the X-ray beam—and
must take steps to eliminate them. Replicate measurements must be
made, both to monitor systematic error and to decrease random error.
Systematic errors must be corrected if they can be measured. Often this
can be accomplished for absorption of X rays and for crystal decay.

The chapters in Section 111 concern themselves with many aspects of
data collection. In them we see both the norm of modern practice and the
state of the art as it will stand in the future.

Calculation of Phases for Fourier Coefficients. Before the electron
density in a crystal can be calculated, phases must be assigned to the
structure factor amplitudes that have been measured. As we mentioned
earlier, the most generally successful method available for doing this is
multiple isomorphous replacement. Here a small number of heavy atoms
are bound to each protein molecule in the crystal, perturbing the intensities
and phases of the diffracted waves. If the positions of the heavy atoms are
known, so that the heavy-atom contribution to the overall diffraction can
be calculated, information about the phase can be determined.

Although the method of isomorphous replacement often serves for the
mitial calculation of phases, one sometimes can use other methods, such
as those discussed in Part B, Vol. 115, to improve the initial estimates.
This is possible when extra information is available about the structure of
the protein in the crystal.

One example of “‘extra information” is when the molecule possesses
symmetry that is not part of the crystal symmetry, that is, when the
asymmetric unit of the crystal contains more than one identical piece of
protein. In this case, identical but independent portions of the structure
can be averaged to produce a new and more accurate electron density
map. This is the basis for a powerful technique for phase improvement
known as the molecular replacement method, described in a collection of
papers by that name assembled by Michael Rossmann. It involves several
separate steps. First the electron density map is averaged according to the
highest possible molecular symmetry. Next, the envelope defining the
surface of the molecule is determined by inspection. Third, the regions of
density outside this envelope are all set to some average value to repre-
sent the interstitial liquid. Finally, this averaged electron density map
with smoothed solvent regions is used for calculation of structure factors
and a new set of phases is compiled, based on a comparison of the calcu-
lated phase and the one from isomorphous replacement. These new
phases are used to calculate a new electron density map, and the process
is repeated iteratively. The technique is especially powerful when the
number of symmetry-related pieces in the asymmetric unit is large, and it
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has been used with great success in work on the icosahedral viruses and
on the coat protein of tobacco mosaic virus.

A variation on this theme is a technique known as density modifica-
tion. Here, in the absence of multiple subunits in the asymmetric unit, one
makes whatever improvements seem justified on the electron density and
uses this modified density to calculate new phases. The modifications are
based on reasonable assumptions about protein crystals. Two assump-
tions that can be made are first that the electron density in solvent regions
of the crystal is fairly smooth, and second that there is an absolute mini-
mum below which the electron density may not go. After the electron
density is modified to meet these conditions, structure factors are calcu-
lated, calculated phases are combined with those from isomorphous re-
placement, a new map is calculated, and the process is repeated. Espe-
cially in cases where the fraction of the crystal volume occupied by
solvent is very high, say with tRNA, the process provides a marked
improvement in the structure.

Production of Molecular Models. The result of the diffraction experi-
ment is the three-dimensional map of electron density in the crystal. This,
map, however, serves merely as data to be used to interpret the molecular
structure. One must build an atomic model to fit the electron density.
Although efforts are being made to automate this process, it often de-
pends greatly upon the chemical intuition of the person doing the work. A
fundamental principle of the model building is that one really knows quite
a lot about the structure of a protein, particularly if the primary structure
is known. In particular, there are fairly strict constraints placed on cova-
lent bond lengths and angles. In addition, although the constraints are not
so strong, simple stereochemical arguments make some torsional configu-
rations more likely than others.

One makes use of this extra knowledge as much as possible. Kendrew
and Watson invented rigid brass-wire models, which accounted for as
many of these covalent constraints as possible, for the model-building
work on myoglobin. Modern crystallographers usually use computer
graphics to assist in the model-building chore, but again, the known cova-
lent dimensions of amino acid residues are built into the programs that are
used.

Because the initial calculation of structure factor phases is inaccurate,
the electron density map, hence the model that can be built from it, is also
inaccurate. It is always true that more information exists in the original
diffraction data than can be represented by a molecular model that fits an
electron density map phased by multiple isomorphous replacement. A vari-
ety of methods exists to improve this model. These include (1) classical
“difference Fourier’ techniques, (2) optimization of the model by a least-
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squares minimization of the difference between observations and the
structure factors calculated from the model, and (3) a minimization of the
energy of noncovalent interactions in the molecule, a procedure that has
nothing to do with the X-ray data. In each case, the only truly unbiased
test of the quality of the model is the accuracy with which structure
factors calculated from it match the observations.

Analysis of the Structure. There are several senses in which one might
“‘analyze’ the structure of a protein molecule. We shall discuss only two.

Crystal structure work on an enzyme is initiated to learn about the
structural basis of its biological activity. Knowing the three-dimensional
structure of an enzyme is not unlike seeing a lathe or a mill all cleaned up
and sitting, silent, on the shop room floor. With a little imagination, one
can make pretty good presumptions about how it works. It is not the
same, however, as seeing it in action. It is also not the same as seeing the
same machine, again silent, with the work and tools in place. To retrieve
this metaphor, the crystallographer sees an enzyme in stasis; the active
machine is not accessible, although recent work in low-temperature crys-
tal structure analysis shows how the machines can be slowed down a lot.
However, it is often possible to catch the enzyme at one end of a process.
Specifically, the biochemist can often react the protein in the crystal with
cofactors, competitive inhibitors, substrate mimics that bind to an active
site, etc. When this has been done, a procedure known as difference
electron density synthesis can be used to learn about the complex. Dif-
fraction data are measured from the derivatized crystals, and amplitudes
that are the signed difference between the derivative structure factors and
the native protein structure factors are used with the native crystal phases
to calculate an electron density map. This map closely approximates the
difference between the electron density in the derivative and the native
crystals. It can often be used to determine the structure of the pseudosub-
strate or effector as they are bound to the enzyme and this knowledge
often can be used to learn much about the action of the enzyme.

A second way in which one may analyze the structure of a protein
molecule is that one can compare it, in a topological sense, with the
known structures of other proteins. This is something that has only begun
to be possible in the last half-dozen years, after a large number of struc-
tures had become known. Some of the ideas that have evolved during this
time are reviewed in the following companion volume.

A number of systematic features of protein structure have been no-
ticed. The most often recurring of these is that a rather small number of
topologies of folding of the B-pleated sheet structure are observed at a
surprisingly high frequency. Another is that at least one rather specific
arrangement of peptide chains, the nucleotide-binding fold found in sev-
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eral dehydrogenases, has been found on several occasions to perform a
similar function in different proteins.

In the final analysis, the structures themselves, not the X-ray data, are
grist for the enzymologist’s mill. From these structures we are beginning
to understand the way in which enzymes catalyze and control reactions,
and to glimpse some of the principles upon which all of molecular, hence
cellular, structures are based. A natural consequence of this new knowl-
edge is that our questions become ever more sophisticated and our curios-
ity about larger and more complicated structures continues to grow. The
message in this for the crystallographer is that the success of his methods
leads to new demands. Whatever he can discover now will make crucial
his ability to discover much more in the future. Although he may not rest
on his laurels, he can labor in secure self confidence that the explosion in
his capabilities which is occurring now, and which is chronicled in these
two volumes, not only will persist, but will continue to be of tremendous
value as the future unfolds.




