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Outline for the Lecture

* Remind you how much you already know -- lenses, crystals

* Show why crystals give diffraction spots.

* Develop the idea of “The Reciprocal Lattice”

* Give some 1dea how we might actually measure diffraction
data

* Show how, given a crystal, we can calculate the diffraction
pattern

* Conversely, show how to calculate the structure from the
diffraction

* Describe the importance of symmetry to diffraction

* Outline the structure-solving methods -- heavy atoms and
MADness
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Creation of a molecule’s image from a crystal has
similarities to creating an image with a lens
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You already understand a little about how lenses work

LIGHT Detector
/ Fourier
X-Rays / /\; y ~>
3. 9= — Computer Synthesis

— =
\ Two rays leaving from the same

point end up at the same place

Object e \ Image
Visible _

>

>
>

1

—

Image

plane
pxrr W .



Maybe you didn’t know ...
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We use a crystal to give us diffraction, and
computation to do the rest of the work of the lens.
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We’ll see that the diffraction pattern
gives information about the
dimensions and periodicity of this
one view of the object.



Why do we use x-rays?

* The features we’re trying to see are on the
order of the distance between atoms: 10-'°

meters.
* To “see” the atoms, we need to use light

with a wavelength that 1s near to this distance.

* X-Rays (x-ray light) have a suitable

wavelength.



What is a crystal?

* A crystal 1s a periodic arrangement of objects
(molecules) repeating in two or three dimensions.

* The repeating unit 1s a parallelepiped (in 3-D) or a
parallelogram (in 2-D).

* A crystal of a typical protein will be half a mm on
a side and contain 10" molecules.



Here’s one choice of repeating unit
in this crystal made of apple trees

Parallelograms
defining crystal
repeat.
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We could make a different
choice of repeating unit
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Why do we use crystals when we’d
like to see one molecule?

* We can’t focus enough x-rays into a small enough
volume to “see” a molecule. We use lots of
molecules in a crystal to get a bigger target.

* Even 1f we could focus them, the x-rays would
burn up the molecule.

* Even 1f that would work, we don’t have a lens
for the x-rays.

* The crystal amplifies the signal, and gives us a

way to get the phase information back.



Let’s return to our crystal made of
apple trees, and define “planes” in
that crystal.



We can slice the crystal at lattice points:
all planes pass through the same apple




And at other angles. Notice:
* planes all pass by the same apple;

* the “stuff” between pairs of planes 1s always the same.
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And one more time...
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Diffraction
Let’s do a thought experiment. Send a beam of x-rays at a
pair of single atoms, suspended in space. If the angle is just
right for the wavelength and distance between the atoms,
the scattered x-rays will be in phase, and they will interfere
constructively.
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On the other hand, if things are not right,
they won’t be in phase, and there will be no
constructive interference, no diffraction.

N

In phase

N Not in phase
™
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Now, let’s think of the stuff between the lattice planes
as being like those two atoms, and try to write a law
that will show conditions to get diffraction.
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Now get rid of
the orchard...



Braggs’ Law describes diffraction as retlection from planes

A:Qd sme
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Waves come in
“in phase.” The wave travels exactly one wavelength to
take the little detour



Watch what happens as we go from maximum
to minimum diffracting position and back.
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Now let’s use a similar diagram to learn
something new about diffraction from a crystal

3

incident X rays

2

w/

e
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%

!sin ¢ + sin ¢ =\2 sin[f (Y +¢')/2]c

os| (U -y')2]

cosP-cosY'=2sin[ (U+Y')2]sin](Y-1¢')/2]

Notice that some of the path length
differences are an integral number of

Wavelerllgths:

we make this substitution, to define

a reflecting plane:

We discover that the reflecting plane must pass
_through lattice points; it is a general lattice plane!

= Sometimes we call them Bragg planes.

Y =8 — «,

Pt qg=>bsinyg + bsiny' = nn
S$=r=acosy — acosy = m

' =0 + «

tan o = mb/na




We have a way to “index” planes in a paralellepiped to
give a unique description of them.
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The indices are
the number of
times each
plane cuts the
axis of the
“unit cell” of
the crystal --
the smallest
repeating unit
that makes up
the crystal.
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To relate the planes in the crystal lattice to the points in
the diffraction pattern, we make Ewald’s construction.

We have that sin 8 = (OA/2)/(1/X) = AXOA/2, or A = 2 sin 8/0OA. Compare
this to Bragg’s Law: A = 2d sin 0. We take 1/OA as being equivalent to d.
Notice the reflection plane, and that OA is perpendicular to it. The Ewald
construction exists in a space with dimensions of reciprocal distance!

This defines
Reciprocal
N\ Space! The vector
AN 3 of length 1/d is
" | perpendicular to

B the reflecting plane
that lies 6 from the
“rays.”

\_/The Ewald Sphere




First, let’s understand what’s happening in the real
experiment, then we’ll try to understand the
reciprocal business. | |

.......

------

Bragg’s Law 1s obeyed:
diffraction occurs when
a vector of length 1/d, ,,

Reflectig
Plane

that 1s perpendicular to
the lattice planes (hkl),
touches the Ewald
sphere of radius 1/A.
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A little trigonometry:

--------

We’ll call
this vector

------

i
.
L

A/ F = tan(20)
A = 2d sin(0)

We can get the
d-spacing for
the reflection.
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And Bragg’s Law 1s obeyed — diffraction will occur — when
that vector of length 1/d,,,, that is perpendicular to the lattice

plane (hkl), touches the Ewald sphere of radius 1/A.

Because we
have this tool,
the Ewald
sphere and
reciprocal space,
we never need
to think about
lattice planes
and Bragg’s law
again.



How can we define this vector that is perpendicular to
the Bragg plane, and has a length that is the reciprocal
of the distance between the planes?

We’ll define the edges of a unit cell with three vectors.
Start with a and b. We know that the cross product of two
vectors lies perpendicular to the plane of the two vectors.

This 1s the direction we want. The amplitude of axb 1s the
area of the parallelogram defined by the vectors:

axb| = ab sina

/’
N
M > \\_/Area = |axb|

a




We’ve described the base of the unit cell of the crystal by
two vectors a and b, and the area of the base is the amplitude
of the cross product of a and b.

Now we’ll include the third vector ¢. We want to know the
spacing d,,,,, between the ab planes [the (001) lattice planes]. It

must be the projection of ¢ on the vector axb. We know that
we get the product of the projection of one vector on another
with the vector dot product: (axb)-c.

“““““““““““““““““““““““

______________________________________

(aXb)-c = d(001)

/_\I\ (001) plane

,f’/ ¥/Area = |axb|




So axb-c, known as a vector triple product, is the area of ab

times d,,, the spacing between the planes. That, of course 1s
the Volume of the unit cell. If we divide this quantity into the
area, we get the reciprocal of the spacing, which 1s what we

want!!

axb
1/d 01, = Area/Volume = [s,,| = |2/ (b | =¢

d(001)

a
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So the reciprocal lattice vector that represents the (001)
planes is

Sgor = axXb / axb-c and sy,/= 1/d 4,

We define each axial reciprocal lattice vector as a
reciprocal unit cell axis:

*

Si0 — 4 Sorg = D So01 — €

axb
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S, — ha” +kb* + l¢*

It is easy to define the reciprocal lattice vector sy, to be perpendicular
to the planes (k&) and to have length s,y = 1/d):

Sw = ha* + kb* + [c* (11)

The principal reciprocal space vectors a*, b*, and ¢* are defined, in terms
of the *‘real space™ vectors or unit cell principal axes, as

b X ¢ ¢ Xa axXb

a?‘:axb-c' *:axb-c’ c*:axb'c (12)
One can use the reciprocal lattice vector sy, to calculate useful parame-
ters for the crystal. For example, one can easily calculate the spacings for
a particular set of lattice planes. For the case where the angle between
unit cell edges a and ¢ is unconstrained {(call it 8) but both a and ¢ are
perpendicular to b, we can readily derive an expression for dju:

di = (Suq * )™ = (H2a¥ + K22 + [26¥2 + hla*c* cos B) "2

| (B*=7w—~B) |
bc B . o |
* — = * H—
@ abc cos(8 — 90°)  asin B’ b b ¢ ¢ sin 8 .“3)
B h? k? 2~ hlcos B
Da = (a'-’ sin’ B3 tpta sin? B ac sin? B)




Let’s be sure this is perfectly clear:

We define each principal reciprocal lattice vector
as a reciprocal unit cell axis:

a’=s,,,= bxc/axb-c and |,y = 1/d
b*=s,,= cxa/axb-c and |s, = 1/d,,,

¢'=8y, = axb/axb-c and |s,,|=1/d,,



The implication of this 1s
that we need not think
about Bragg planes again,
we think only of
reciprocal-lattice vectors:

5., = ha* + kb* + Ic*
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Plate 2 from Taylor and Lipson -- Optical Transforms

diffraction

Now we use the Taylor and Lipson figures to see how the
contents of the crystal relate to the diffraction pattern.

Notice (1)
The sym-
metry, and
(2) how the
continuous
diffraction
pattern of
one molec-
ule (b) 1s
“sampled”
by the lat-
tice of dif-
fraction
points.



Do we understand the real/reciprocal lattice idea?

Crystal —
Real Lattice

Diffraction —
Reciprocal
Lattice
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Confirm that the
vectors
perpendicular to
the Crystal-
Lattice planes are
parallel to the
Reciprocal
Lattice vectors,
and that the
reciprocal
distances make
sense.
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* Show why crystals give diffraction spots.

* Develop the 1dea of “The Reciprocal Lattice”

* Give some idea how we might actually measure
diffraction data

* Show how, given a crystal, we can calculate the diffraction
pattern

* Conversely, show how to calculate the structure from the
diffraction

* Describe the importance of symmetry to diffraction

* Outline the structure-solving methods -- heavy atoms and
MADness



Remember the geometry -- if the Bragg
planes lic angle O from the incident x-ray
beam, the total diffraction angle will be 20.
We can make an instrument to exploit that
geometry.




And Remember the objective — We must
view the molecule from every direction to
recreate a three-dimensional 1image:

* We must obtain diffraction from all of the
Bragg planes;
* We must sample all of the reciprocal lattice.



My first data were collected with a Weissenberg
Camera

Inclination
axis

screen

A complicated
machine to simplify
our view of

R reciprocal space.

Incident |
beam

C D (b)
(c)




The Weissenberg photograph gives a wonderfully
distorted, but organized, view of reciprocal space.

.| Figure 5.23. Weissenberg photograph showing indexed reciprocal lattice lines.

g h=@ h=7

b=




Martin Buerger devised a camera geometry
that preserved the shape of reciprocal space.

Plane of
rl.points

Plane of

An even more
complicated
machine to
simplify our
view of
reciprocal
space even
more.

Plane of
r.L.points
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An antique precession photo of Chymotripsin, courtesy of David M Blow

The precession
photograph
allows us to
view the
diffraction
pattern of the
crystal lattice as
an undistorted
pattern of spots.



Notice the
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n crystal

Figure 5.59. Precession can ‘Bram Schierbeek, Bruker-AXS 3




Data for the first protein structures were measured
on precession cameras with x-ray film. (t-40)

Bram Schierbeek, Bruker-AXS

bnl v
pXIT )
protein
\J\(r'ystal\ography

An X-ray Difffraction Photograph of a Protein Crystal



The automated Eulerian cradle decreased the labor, but
still one measured reflections one at a time. (30yrs ago)

Specimam / [ Detector

T— ‘HHHH"""--.#'"" h 28 -



p\ 7 r {

- Am-antique rotation photograph of B-Phyoerythrin -- real x-ray film.

Simple rotation

geometry
produces a
complicated pattern
that requires good
software to
interpret. Modern
CCD-based
detectors with four-
circle
diffractometers
record such
patterns and
measure every spot
intensity.




Uli Arndt and Alan Wonacott invented the automated
rotation camera. Still x-ray film, but very much more

efficient.

(~23yrs ago

Bram Schierbeek, Bruker-AXS



Another Uli Arndt invention was a video-based detector

The screen was small, but it was very sensitive and could read out
continuously — the x-tal just kept rotating as images came out.

(20yrs ago) BE N !

Bram Schierbeek
Bruker-AXS
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An important advance was photoluminescent imaging plates.
MAR research, followed by Rigaku, made a successful camera
that worked like electronic x-ray film, but much better. (19 yrs)

Unrecorded Imaging Plate

——BaFBr:Eu®
Support

X-ray Photons
: J l Stored Image

Exposure

He-Ne Laser Beam Scannmg

— 4

; g

—Excitation light

(633rm)
I Lumingscence
{400nm}
Visible Light
F’Iag: |? !
ready for 5 &
uss :];gain ;’/ ! L %\ \‘\\
» ¥ R
252
: Erasing

IFlcRu &1, The process of recording an x-ray radiation 1mage on an imaging 8
phte and subsequ&nt read-out and erasure.




The advance that made possible our modern detectors
was made by Ed Westbrook, Sol Gruner, and others:
bonding of a charge-coupled device to a fiber-optic taper
with an x-ray sensitive phosphor in front. (13yrs ago)

PHOSPHOR
SCREEN FIBEROPTIC TAPER

~_7

/

12keV X-ray —>» 650 Iph —> 35Iph—>» 10 e-

T 25 mm




Several of these can be bonded together to make a large
detector... (9yrs ago)




Like this one, made
for us by Walter
Phillips
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And the modern commercial versions are large,
fast, and very accurate. (4yrs ago)

Detectors like these are the basis for
modern, high-throughput
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The planes of

Spots in reciprocal
space appear as

circles of spots on
an area-sensitive Xx-
ray detector (film,
[P, CCD-based,
etc.)

Z ﬁauter




As the
crystal is

rotated, the
circles are
extended 1nto
“lunes™

pxrr ¥



Rotation sweeps out a strangely-
shaped volume. However...

* Many r.l. points will be
recorded during a single short

rotation.
* Contiguous rotations will cover

much of the reciprocal lattice.

* The “camera” 1s simple: an
axis, a film, and a shutter.
* [t’s easy to substitute a range of

detectors.



Let’s look at a series of images from a CCD-
based detector, each representing one degree .

of crystal rotation .
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Outline for the Lecture

* Remind you how much you already know -- lenses, crystals

* Show why crystals give diffraction spots.

* Develop the 1dea of “The Reciprocal Lattice”

* Give some 1dea how we might actually measure diffraction
data

* Show how, given a crystal, we can calculate the
diffraction pattern

* Conversely, show how to calculate the structure from the
diffraction

* Describe the importance of symmetry to diffraction

* Outline the structure-solving methods -- heavy atoms and
MADness
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Plate 2 from Taylor and Lipson -- Optical Transforms

diffraction

Now we use the Taylor and Lipson figures to see how the
contents of the crystal relate to the diffraction pattern.

Notice (1)
The sym-
metry, and
(2) how the
continuous
diffraction
pattern of
one molec-
ule (b) 1s
“sampled”
by the lat-
tice of dif-
fraction
points.



Here’s another (2D) example with an asymmetric motif

Each spot

representi\the

intensity of

reflection

from one set [ -

W e A - -
- e o

of planes - =
cutting

through the

crystal

Note the
1nversion
symmetry

Plate 26 from Taylor and Lipson -- Optical Transforms




Remember that we can use an x/y graph to
represent the phase and amplitude of a wave:

|

: Phase
! angle ¢
|

|

|

And then we describe the “wave” as a complex number:
f=A_{cos¢ +isindp} and
f=A_ e



* The amplitude of scattering depends on the
number of electrons on each atom.
* The phase depends on the fractional distance it

lies from the lattice plane.

R

Atomic structure factors
add as complex numbers,
Oor vectors.

Randy Read

Scattering from
lattice planes
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We can write an expression to describe this
diffraction from atoms in a crystal

The scattering amplitude (the structure factor)
for an individual atom is going to be: The hkl describe

/ the Bragg Planes

fisr = J; expl2mith; + ky; + 12)]

| The 211 and the fractional
The scattering power of the coordinates x. take care of
atom, ~ the number of electrons the phase angle

And the structure factor for a crystal of atoms will be:
Fuy = D, fexpl2mithx; + ky; + 1z)]
atoms | '

The strength of scattering from each atom



Does this expression for the

Structure Factor make sense? A \
Try it with an example: a crystal with N H\\
three atoms. What are the phases of 1\1 "-R
scattering from each atom? Use this I'R \\\- . \\i\

N 1

fua = f; explemithy; + ky; + 2)] \

For these planes, (h, k) = (3, 2)

For atom 1. x,y=2/3,0: So2mhx +ky)=2m3x2/3+2x0)=41=0
The atom 1s on the plane, so this makes sense.

Foratom 2. x,y=0, 1/2: So2mhx +ky)=2m3x0+2x 1/2)=2m=0
Again, the atom is on the plane, so this makes sense.

For atom 3. x,y=1/3,1/4: So2mhx +ky)=2m3 x 1/3+2x 1/4)=311=T1
The atom lies half-way between two planes, so this makes sense.
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We can see how the structure factors
from individual atoms add up.

Wave Complex Vector Complex number

1 /\/ y  f =1+0i
2 — N — T~ f=0+05i

J - = — B =-0.2 + 0.2i

3

) ) ~
| | f, =0.8+0.7i



See also:

http://www.ysbl.york.ac.uk/~cowtan/
sfapplet/sfintro.nhtml Structure Factor Tutorial
fourier/fourier.html Book of Fourier

pxrr ¥


http://www.ysbl.york.ac.uk/~cowtan/

Outline for the Lecture

* Remind you how much you already know -- lenses, crystals

* Show why crystals give diffraction spots.

* Develop the idea of “The Reciprocal Lattice”

* Give some 1dea how we might actually measure diffraction
data

* Show how, given a crystal, we can calculate the diffraction

pattern

* Describe the importance of symmetry to diffraction

* Outline the structure-solving methods -- heavy atoms and
MADness



Q: How do we perform the second
interference step 1n the functioning of the lens
-- to reconstruct the 1mage of the original

ObjeCt? —> _— |
A: We will have to calculate it. = IKQXI

Q: How will we represent that object?
A: The x-rays are scattered from electrons 1n
the atoms of the crystal.

Therefore: for us, the “image” 1s going to be
a representation of the electron density.



The structure factor and the electron density
function are Fourier inverses of one another

Fuy = fv p(x,y,z2) exp[-_l—27ri(hx + ky + {z)] dV

| &
plx,y,z) = v Z Z 2 Fuu expl—2miCthx + ky + [2)]
; |

fr= —x k

* Note that the electron density 1s real but the structure factor
1S complex.

* The phase information must be included in the Fourier
synthesis that produces the electron density!

* This has to be recovered, because the diffraction
experiment measures the intensity of diffraction, which is
the square of the structure factor:

I=F
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How does Fourier synthesis work?

Can we produce a trial structure and see how

waves can be summed to give this structure
back?

fix]-T



In the Fourier Synthesis, just a few waves suffice to give a
reasonable approximation to the original pattern
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(b)
What is the concept of

“resolution?”

0" 5 0" 0% ® 0% o0, o0® .

b p '3 » N )

¢ IR vl Sl phhy ol sy
-

'o':. 0 o,%° »,
S it

Here 1s the Fourier
synthesis function:

L [ .
fx) = 5= f F(h)e ™ dh

When the limits of the
summation are not so
great, information 1s
lost 1n the synthesized
structure.

We say that the
“resolution” equals the
d-spacing of the
smallest Bragg planes.




Resolution: The d-spacing of the highest
order Bragg planes included in the Fourier
synthesis. Small d-spacing is good.

Graphics by
Phil Evans

4.0 Ang (160 refl’s)




Another
example.

The famous Taylor
and Lipson rubber
ducky.



Outline for the Lecture

* Remind you how much you already know -- lenses, crystals

* Show why crystals give diffraction spots.

* Develop the idea of “The Reciprocal Lattice”

* Give some 1dea how we might actually measure diffraction
data

* Show how, given a crystal, we can calculate the diffraction
pattern

* Conversely, show how to calculate the structure from the

diffraction

* Outline the structure-solving methods -- heavy atoms and
MADness



Symmetry of crystals

We’ll take some of our examples
from David Blow’s book.

Symmetry: An operation of
rotation, translation, inversion,
mirroring, or some combination
of these that takes an object back
into itself.

Outline of R
Crystallography
for Biologists

* The simplest symmetry in a crystal
1s repetition.

* The repeated motif may have its
own symmetry.
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Symmetry Groups

Biological
molecules are all
chiral, or “handed,”
so only rotation
and translation
symmetry are
permissible.

Here are the
combinations
(groups) of
symmetries one
finds 1n
macromolecular

£ & =

Fig. 2.18 The point groups that can exist in protein crystals.

crystals.

br
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What is a Group?

Elements 1n a group must obey certain properties:

* There must be the identity element.

* The combination of any two elements must generate
an element of the group. This 1s called closure.

* Number of elements = number of objects repeated =
order of the group.

* Every element in the group must have an inverse.

I x32=] 322

32 = 3-1 ’
3x2=2 \\ﬁ}m‘% 2
Point Group 1s 32 \ !




Simple crystal symmetry

The simplest crystal BT VR
would contain a single o o /
asymmetric object gy digyd
repeated by translational

repetition only, like our
apple orchard.




More complicated crystal symmetry

A crystal could contain a symmetric object, also
repeated by translational repetition.

Fig. 2.35 A symmetrical dimer.

Fig. 2.36 The smallest unit of the
structure that can generate the
complete crystal structure by
means of its symmetry

operations is called the crystal

symmetry

asymmetric unit.

operators are

Notice: — generated
exactly two

ducks in the

unit cell



Now let’s try it in three dimensions

positions
of 2-fold
axes A

Fig. 2.37 Symmetry and equivalent positions in space group P2. A
2-fold axis along b creates two asymmetric units in the unit cell. Each
unit has four 2-fold axes associated with it, at x,z = (0, 0) (black
circles), and at (0,1/2),(1/2, 0), (1/2,1/2) (open circles).

Fig. 2.38 A unit cell of space
group P2,

Space Group P2: P =*“primitive,” 2 = two-fold rotation axis.
We call this type of crystal monoclinic. Order = 2.
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The Screw Axis

This symmetry
operation 1s a rotation
followed by a
translation: m_.

The translation 1s a n/m
translation along one of
the major crystallo-
graphic directions,
where m 1s the order of
the major rotation axis.

Here, 1t’s written 2, to

represent the two-fold
screw axis, and the
translation 1s 72.

ystallography

- \g_

Fig. 2.43 A P2, structure
viewed down the b direction. The
unshaded molecules are at y = 0,
and the shaded molecules at
y=1/2. There are 2-fold screw
axes at the corners of the unit
cell, and also at positions
indicated by white circles.

Fig. 2.44 Arrangement of units in
a P2, lattice. Units facing one way
are at the top and bottom of the
cell, those facing the other are
halfway in between. Objects A, B,
and C are related by a 2-fold screw
operation.




Centered Lattice

To make a new
monoclinic lattice, shift
the motif at the origin
along a diagonal to a new
spot by a major fraction of
the unit cell edges.

The lattice 1s “centered”
because a new motif
appears in the center of a
face or of the body of the
unit cell.

Subtle and beautiful rules
govern what centering
operations are allowed.
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-2-fold
axis

2-fold
screw
relates

relates A&D

A&B

2-fold
axis

relates

C&D

conventional unit cell

YDy

primitive unit cell 49 =

Fig. 2.39 A C-face centred monocli

Fig. 2.40 Summary of the
symmetry of a C2 lattice. Screw
axes are identified by single-
barbed arrows.

nic structure.

primitive unit cell

.

conventional
face-centred
unit cell




And higher symmetry

If one has two-fold axes in more than one direction, it must be
three directions, and the axes must be perpendicular. We call
this orthorhombic.

NN

e ‘ﬁ
Fig. 2.41 P222 has intersecting

sets of 2-fold axes in three
perpendicular directions.

Fig. 2.42 Molecular arrangement in space group pP222, showing just a
few of the 2-fold axes.




And finally ...

A three-fold axis will produce a trigonal crystal.
Notice how the first three-fold axis creates two others

with different environments.

Fig. 2.28 If there is 3-fold
Symmetry, the lattice is generated
by two lattice translations which
make an angle of 120° and are of
equal length. When objects are
arranged with 3-fold symmetry
about the lattice points, two other
types of 3-foid symmetry axis are
generated, indicated within the
outlined cell.




The Seven Crystal Systems

The combination of symmetry elements yields only these forms

Crystal Bravais External Minimum Unit Cell

System Types Symmetry Properties

Triclinic P None a, b, c, al, be, ga,

Monoclinic P,C Onp 2-fold axis, parallel b (b a, b, ¢, 90, be, 90
unique)

Orthorhombic | P, I, F | Three perpendicular 2-folds a, b, c, 90, 90, 90

Tetragonal P, 1 One 4-fold axis, parallel ¢ a, a, ¢, 90, 90, 90

Trigonal P,R | One 3-fold axis a, a, c, 90, 90, 120

Hexagonal P One 6-fold axis a, a, c, 90, 90, 120

Cubic p,F, 1 | Four 3-folds along space a, a, ,a, 90, 90, 90
diagonal
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The Bravais
Lattices

Here are the 14 ways
crystal lattices can be
formed 1n the seven
crystal systems.

The international convention in
displaying these is to give a
down, b across, and ¢ up or
towards the viewer.
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How many space groups?
* There are 230 space groups possible

* Only 65 of these employ only rotational symmetry
(suitable for chiral molecules)

* Here are the most abundant observed in macromolecular
structures, 65% of the total:




And finally the icosahedral symmetry of

Fig. 2.19 Footballs are often
decorated in a way that shows
532 symmetry.

spherical viruses

Fig. 2.20 Fanciful drawing of left
hands arranged in 532 symmetry
by Don Caspar (reproduced from
Caspar (1980) by permission of
the Biophysical Society).

Fig. 2.21 Pseudo-symmetrical
arrangement of 180 units
(reproduced from Harrison
(1980) by permission of the
Biophysical Society).



How does symmetry affect a
diffraction pattern?

Symmetry affects a diffraction pattern in at least
three ways:

Friedel’s Law — There’s an inversion centre in
reciprocal space.

Laue Point Group — Diffraction has symmetry like
that of the crystal.

Systematic absences — some of the symmetry
operations erase some reflections.



Friedel’s Law: Bragg reflection from the
front of the planes 1s the same as from the

back.
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Laue Point Group: The diffraction will adopt
some of the symmetry of the crystal.

(-h, K, -I)
/ > @ Let's say the
(1, 5, 2) and
the (-1, 5 -2)

=U (h, k, 1)



The Laue Point Group for a crystal 1s
the rotational or mirror symmetry of the
space group, plus Friedel’s Law. For
example:

P2 or P2, - 2/m

Produces a two-fold, a mirror
perpendicular to it, and an inversion
centre in the diffraction pattern /
reciprocal space.
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Implication of this for the experiment:

One will need only to record 1/12 of reciprocal space
to get complete data. Sometimes one can record
anomalously-related reflections on the same
1mage.






We abev can T»7 N wadh o L hon
Sgmin €Dy operaTions o Medf e
'jl,mma:ﬁl? Gfﬂu Q/:@m??m‘ fa/ﬂ:vn.
Lo-z;/:_ a){ pP2:

o 2 LT

Ay — R
’ ol 2
. ‘ Lkt
¢

el
VOCZ«c,L Che J,’-E?Vébﬂ\)n




6"“-’(“’3\6 T“\c mfacﬂmc,m&?z-l
Fuee” Ef[cvs oM hag# oy H3) +¢ $in YT b + .'I@;.)
” + cosam(- wﬁ+b7,-1%,)+c - Em T g+ _j%.ﬂ

Then, Wsg: Sin (KEY) = §inK- 059 £ COSK-STmG
and  05(XTY) = (osk €055 F Shi- Stk g
2 929 :
Fhu'b 7\240 COSlﬂ'(M "’.ﬁ%> [CDS' Zﬂ"k«l + ¢ 5Fl\l'ﬂ'k7]

”/1 O‘Q[ :
Om cm‘,sac@wﬂ‘ th{“ g 2% veYirsed

Also notice that for



Outline for the Lecture

* Remind you how much you already know -- lenses, crystals

* Show why crystals give diffraction spots.

* Develop the idea of “The Reciprocal Lattice”

* Give some 1dea how we might actually measure diffraction
data

* Show how, given a crystal, we can calculate the diffraction
pattern

* Conversely, show how to calculate the structure from the
diffraction

* Describe the importance of symmetry to diffraction

* Outline the structure-solving methods -- heavy atoms
and MADness



How we solve structures? We must
somehow estimate phases so we can
perform the inverse Fourier transtorm.

* Isomorphous Replacement with heavy atoms
* MAD/SAD, a variant of IR

* Molecular replacement 1f we have a decent model.



Perutz’s Fundamental Idea:
Isomorphous Replacement

| F,=XF F,,=F,+F, F,

We find that, for some things, we can
approximate |F,| with |F,; - F,|. This often
suffices for us to solve for the positions of the

heavy atom as if it were a small-molecule
-" structure.




So for some particular reflection and a particular
heavy atom, we can begin to find the phase:

Real gas

Knowing the position of the heavy atom allows us to
calculate F,,. Then we use F, =F,; + (-)F,; to show that the

phase triangles close with a two-fold ambiguity, at G and
at H. There are several ways to resolve the ambiguity.
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One way to resolve the ambiguity is to use a
second isomorphous heavy-atom derivative.

& |ll':'||::|l|
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A second technique involves use of anomalous
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(resonant) scattering from a heavy atom.

] I'-'\.|:|.'i| M ¥
Quis

In this case the resonance
between the electrons on the
heavy atom and the x-rays
cause a phase and amplitude
shift. The symmetry of
diffraction (from the front vs
back of the Bragg planes) is
broken. Friedel’s Law is
broken! This can be measured
and used.
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One way to represent
this resonance 1s plots of
the shifts in the real part
(Af’) and imaginary part
(Af”) of the scattering of
x-rays as a function of the
photon energy.
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One can see how to choose wavelengths to get

pxrr W Spectrum from Phizackerly, Hendrickson, et al. Study of Lamprey Haemoglobin.
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This Viultiwavelength /A nomalous Viffraction
method often gives very strong phase
information and is the source of many new
structures.
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How do we find the heavy-
atom positions that allow us
to do MIR or MAD phasing?

There are generally two methods:
* Patterson-function methods

* Direct-phasing methods



Lindo Patterson saw that to interpret a diffraction
pattern, he could correlate the electron density with
itself:
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This is the cosine transform of intensity!
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About the same time (all of this happened only a “short”
time ago, in the ’°50s) David Harker saw a neat way to
approach “solving” the Patterson function:

Ve ks S5
T zﬁn{ e vecdds G o ol Sxfpec] — M‘VK\
ol rbmﬂ-mv}:

Scamle - Pz, /Oié 2 ¥ veShs
‘%196&‘2:0«& %vsm/@rcd ‘7‘/(),(- thme/yl?

(X.92)— (x, Gory  Z) = (2x,ba, 22)
/[7\0— IQ-WL V\’//‘lx:ﬁwﬁ X ¥+ LOT[{ avse ‘ﬂL(“V“’)z

@)Ihlw) - @\ﬂn— Vz/r sc ¥,

This method is the basis of
software such as HEAVY
(Terwilliger)



Direct Phasing Methods

During the 1950s and ‘60s Sayre, Hauptmann, and the Karles
learned to determine crystal structures from the diffraction
intensities directly. They made use of two principles:

* The first was that the sum of phases of three Bragg planes that
form a closed triangle is invariant to the choice of the origin of the
crystallographic unit cell. e

2
e { \ ©0.2)

* Secondly, when the crystal 1s comprised of discreet atoms and all
three structure factors from these Bragg planes are large, this sum
of three phases is near to zero.




* Notice that the indices of the three sets of planes in the figure
sum to zero. This particular set of reflections 1s called a
"triplet," for obvious reasons.

h+k+1=0

2 { \ (0,2)

« Here we have that the sum of phases ¢, + ¢, + ¢, = const.

* It's not so hard to show that this 1s true: multiply three Fs and the
three phases end up 1n a sum.



/ \ (0.2)

2.,-3)

Finally, 1t's not so hard to see that if the three Fs are large, the sum
of phases should be near zero, as follows. If the only three atoms
in the unit cell were at the corners of the colored triangle in Figure
5, firstly, all three structure factors would be large since all atoms
lie only on the planes, and secondly, since the atoms are on the
planes, the phases would be zero. One can see that it makes sense
that this sum of phases might be constant. If one moves an atom
from one vertex of the colored triangle in the figure to the next
along the green line (the -2,1 plane), one can see that the other two
phases, for the red and blue sets of planes, would shift smoothly by

+271 and -27 respectively, keeping the total constant.



General Scheme for Applying Direct
Methods

* Assign a few phases arbitrarily (this sets the origin).
* Find lots of triplets, where h+k+1 = 0.

* Use the sum-of-phases = 0 expression to propagate
phases

The modern schemes are much more sophisticated
(Weeks) and deal with the probabilities that the sum is
not precisely zero.



The End

You’ve seen the fundamentals of
crystallography. You could figure
everything else out from here.

It’1l take a few exposures to 1t for you really
to wrap your mind around all of this.

For example,

* [ didn’t really understand the Fourier
transform until I did EM on 2D x-tals

* [ didn’t figure out how to explain direct
methods until the 215t Century.



But I can tell you this, if you really
want to learn it...

Teach It!



