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Abstract 

MOLREP is an automated program for molecular 
replacement which utilizes effective new approaches in 
data processing and rotational and translational search- 
ing. These include an automatic choice of all parameters, 
scaling by Patterson origin peaks and sott resolution cut- 
off. One of the cornerstones of the program is an original 
full-symmetry translation function combined with a 
packing function. Information from the model already 
placed in the cell is incorporated in both translation and 
packing functions. A number of tests using experimental 
data proved the ability of the program to find the correct 
solution in difficult cases. 

1. Introduction 

The molecular replacement (MR) method of crystal 
structure determination (Rossmann, 1972) has developed 
significantly in recent years. This reflects increased in- 
terest in the method because of the rapidly growing 
number of protein structures that are available as search 
models. There are several program packages for MR 
using various algorithms for the six-dimensional search 
(reviewed by Turkenburg & Dodson, 1996). The most 
commonly used are AMoRe (Navaza, 1994), X-PLOR 
(Briinger, 1990) and MERLOT (Fitzgerald, 1988). 

Here we present the program MOLREP which is a 
fully automated program for MR. It is characterized by 
several new approaches in data processing and rotational 
and translational searching. As part of the package 
BLANC (Vagin, 1982; Vagin, Murshudov & Strokopytov, 
1997), it has been used successfully for solving the 
structures of a number of proteins (Borisova et al., 1986; 
Zaitsev, Vagin, Nekrasov & Moshkov, 1986; Pavlovsky et 
al., 1989; Teplyakov et al., 1992). 

2. Description of the program 

Starting with the X-ray data for the unknown structure 
and a search model, MOLREP goes through all stages of 
MR automatically. It chooses all required parameters, 
selects the solution and produces the model properly 
oriented and positioned in the unit cell. On the other 
hand, calculation of the rotation function (RF), transla- 
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tion function (TF) and rigid-body refinement can be run 
separately using three independent programs which allow 
manual input of a number of parameters. 

Structure factors are calculated for each orientation/ 
position of the model by the fast Fourier transformation 
of its electron density. An altemative is to interpolate 
their values from a table of structure factors calculated on 
a fine grid, as in AMoRe. The price for the higher 
accuracy of direct calculations is the CPU time. However, 
the difference becomes noticeable only when testing 
many RF solutions. One cycle of MR (RF + TF) for a 
medium-sized protein (see §3.1) at 3 A resolution takes 
about 10 min on SGI Challenge L for both MOLREP and 
AMoRe. 

MOLREP exhibits the following new features in data 
processing in contrast with the other programs. 

(i) Scaling of the observed and calculated structure 
factors is based on the scaling of the corresponding 
Patterson origin peaks (Rogers, 1965). This method is 
advantageous when only low-resolution data are avail- 
able. In such a case, the estimation of the overall B factor 
from the Wilson plot may be inaccurate. Scaling by 
Patterson synthesis is also useful for the cross RF where 
there are different cells for the search model and for the 
unknown structure. 

(ii) The low-resolution cut-off is applied in the form 
of a Gaussian F = Fobs{1 -- exp[--Boff(sin 0/~.)2]}, where 
Bof r = (2dm~x) 2. The common practice is to exclude low- 
resolution reflections from calculations because they are 
corrupted by the bulk solvent contribution. However, this 
results in the series termination effect and introduces 
systematic errors in the electron density, particularly at 
the surface of the molecule. The 'sott' low-resolution cut- 
off similar to the one described is used in some 
refinement programs as a way of modelling disordered 
solvent. We propose to apply it in all calculations and not 
only for scaling Fobs and Fcalc. This will effectively 
reduce the weight of low-resolution terms, which is 
preferable to excluding those terms completely. Applica- 
tion of the 'sott' cut-off increased the signal-to-noise 
ratio in a test described below. 

The rotational search is performed using the fast RF of 
Crowther (1972). To reduce the noise, the RF is 
calculated for three orthogonal orientations of the model 
and averaged over them. The radius of the Patterson 
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sphere is derived from the size of the search model and is 
usually twice the radius of gyration. However, the 
Patterson radius should not exceed half of the unit-cell 
dimension by more than 250, otherwise the contribution 
of intermolecular vectors becomes significant. The shape 
of the model is taken into account at the stage of the 
translational search. For elongated molecules, the 
resolution range is proportionally increased to include 
low-resolution terms so that the TF is less sensitive to 
errors in the model orientation. 

The TF used in the package has been described 
elsewhere (Vagin, 1989). The basic equations are given 
in the Appendix. This TF originates from the T2 function 
of Crowther & Blow (1967) corrected by Harada, 
Lifchitz, Berthou & Jolles (1981). T2 is usually 
calculated as the sum of individual Tj.k functions, each 
of which corresponds to a pair of crystallographic 
symmetry operators j and k 

T2(s) = ~ ,  Tjk(s) = ~, f P"(r)P~(s, r) dr 
jCk jCk 

where po and pc are the observed and calculated 
Patterson functions, respectively. 

The principal advantage of T2 over T1 is the 
simultaneous use of all symmetry operators resulting in 
a single peak with an improved signal-to-noise ratio. This 
gives the position of the model in the unit cell whereas T1 
indicates the position relative to a symmetry element. 
MOLREP exhibits two main differences compared with 
other TF programs. First, the TF is calculated as the 
product of Tj.k functions rather than their sum. This 
increases the contrast of the TF. Second, the translational 
search is coupled with a packing function (PF) to remove 
false maxima which correspond to interpenetrating 
molecules 

Q ( s )  = - ~_, f pj(r, s)Pk(r, s)dr 
j#k 

where pj(r,s) is the electron density of the search model 
calculated for the symmetry operatorj. Thus, the TF used 
here is the following 

T(s) = I-I Tjk(s) × Q(s). 
j#k 

The TF is computed using the fast Fourier technique. The 
algorithm for calculating the PF is similar to that used for 
the TF and performed by the same subroutine. Both TF 
and PF allow incorporation of the second model already 
placed in the cell (see Appendix). The orientation and 
position of the model obtained from the RF and TF may 
be refined by the conventional rigid-body multidomain 
refinement incorporated in MOLREP. The minimized 
function is the difference between the observed and 
calculated structure factors. The best solution is indicated 
by the highest correlation coefficient 

c c  = <IFolIF¢I- <IFol)<IF~I>) 
((IFol 2 - (IFol)2)(lFcI 2 - (lEvi)2)) 1/2" 

The refinement of the orientation of the model prior to 
the translational search is performed in space group P1 
and has proved to be very useful in some cases. 

3. Tests 

The program was tested on a number of cases with 
experimental X-ray data and gave satisfactory results. 
Here we present three tests: protein structure with a low 
sequence similarity to the search model, the MR solution 
of a complex using one of the components and the 
structure of an RNA hexamer. 

3.1. Test 1 

Inorganic pyrophosphatase from Thermus thermophi- 
lus (PDB code 2PRD; Teplyakov et al., 1992) was 
crystallized in space group R32 with one 20kDa 
monomer in the asymmetric unit. The search model 
was constructed from the structure of the 32 kDa 
monomer of the yeast enzyme (1YPP; Bernstein et al., 
1977) by removing extra parts of the sequence. The case 
is difficult for MR because of the low level of amino acid 
identity of the two enzymes (only 20%). The three- 
dimensional superposition of the structures gives an 
r.m.s, deviation of 2.0 A for all 170 common Ca atoms. 
40 Ca atoms, i.e. almost a quarter of the structure, 
deviate by more than 2 A. The case was tested using 
MOLREP, AMoRe and X-PLOR. The RF was calculated 
in the resolution range 15-3 A with the radius of the 
Patterson sphere of 25 A (these parameters gave the best 
results for both MOLREP and AMoRe). The correct 
orientation was found by MOLREP and AMoRe as the 
top peak of the RE The contrast, defined as the ratio of 
the first (correct) peak to the next (incorrect) peak, was 
1.30 in MOLREP and 1.11 in AMoRe. The correct 
solution was not among the first 300 peaks of the 
X-PLOR RF (these were also checked using PC 
refinement). The translational search performed by 
MOLREP and AMoRe identified the correct solution as 
the top peak of the TF, with the contrast 1.52 and 1.36, 
respectively. 

3.2. Test 2 

This example demonstrates the ability of the program 
to find a solution when only a small fraction of the 
structure is used as a search model. The 'unknown' 
structure was the complex of Fab with lysozyme (2IFF; 
Bernstein et al., 1977; Chacko et al., 1995), crystallized 
in space group P2~ with one molecule in the asymmetric 
unit. The search model was that of lysozyme (1HEM), 
which constituted 24% of the total mass of the complex. 
A single peak which was twice the height of the others 
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appeared on both the RF and the TF calculated with 
MOLREP and indicated the correct solution. h, H 

r 
3.3. Test 3 s 

u 
Nucleic acids are difficult objects for MR because of  v 

their internal symmetry. We have tested the program on N 
the RNA hexamer CGCGCG, which crystallized in space Fobs(h) 
group P6~22 with one duplex in the asymmetric unit. The F(h) 
molecules pack head-to-tail and form continuous helices P(u,~) 
along the twofold axes. The structure was solved by MR Pobs(U) 
using AMoRe (Rypniewski, 1997). The search model was p(r,~) 
the B-form RNA duplex UAUAUA (1RNA). The correct p,(r~) 
solution was selected at the stage of  the translational 

IRA 
search (it corresponded to the eighth peak of  the RF), dj 
whereas the RF was insensitive to the correct orientation: Tjds) 
20 top peaks were approximately of  equal height. The RF 
in MOLREP identified the correct solution as the top 
peak though with a very low contrast (1.05). This 
orientation resulted in the TF peak being 60% higher 
than the others. 

These nontrivial tests present MOLREP as a reliable, 
fast and completely automatic program. In some cases, 
MOLREP demonstrated higher accuracy and a better 
contrast compared with AMoRe, which is commonly 
recognized as the best in the field. We believe that in 
difficult cases one program may have an advantage over 
the other due to the different algorithms and it is 
therefore wise to try both of  them. 

4. Distribution 

The program MOLREP is written in standard Fortran77 
and can be nan under Unix, VMS and Windows. It is 
available free as part of  the package BLANC or 
independently via anonymous FTP from the account tip. 
yorvic.york.ac.uk. All inquiries about the program should 
be addressed to A. Vagin (alexei@yorvic.york.ac.uk). 

APPENDIX A 
Translation function and packing function for one 

and two models 

The notation is given in Table 1. 

(a) The electron density for the model in position s 

N-I 
p(r, s) = Y] pj(r, s) 

j=0 

= y][V -t  ~ F(h[Rj])exp(-2rcihr) 
j h 

x exp(2zrih[Rj]s)] 

The Patterson function for the model in position s 

Table 1. Notation 

Reciprocal-space vectors 
Position in the unit cell 
Translation vector in real space 
Patterson-space vector 
Volume of the unit cell 
Number of symmetry operators 
Observed structure-factor amplitude 
Structure-factor amplitude calculated for the model in the 
initial position 
Patterson function calculated for the model in position s 
Patterson function for the unknown structure 
Electron density of the model in position s 
Electron density of the model related to the original model 
by the jth symmetry operator 
Rotation matrix component of the jth symmetry operator 
Translation vector component ofthejth symmetry operator 
Translation function for symmetry operators j and k 

P(u, s) = f p(r + u, s)p(r, s)dr 

= ~2 ~ f pj(r + u, s)pk(r, s)dr 
j k 

= ~ ~ f Pjk(u, s) 
j k 

P(u, s) = V-' ~_. ~_, Y][F(h[Rj])F*(h[Rk])exp(2zrihdj) 
j k h 

x exp(-2rrihdk) exp(-2rr ihu)  exp(2rrih[Rj]s) 

x exp(-27rih[R,]s)] 

The translation function for one model 

T(s) -- f Pobs(U)P(u, s)du 

= ~ ~ f Pobs(U)Pjk(u, s)du 
j k 

= E Z rj,(s) 
j * 

The translation function 

T(s) = V -l  

presented as Fourier series 

A n exp(-2rr iHs)  
H 

with coeffÉcients 

2 * A n = ~ ~ ~-~[F~,bs(h)F(h[Rg])F (h[Rk])exp(2zrihdg.) 
j k h 

x exp(-2z t ihd, )]  

where summation is over those h for which H = h([Rk] - 

[RA). 
(b) The electron density and translation function for 

two independent models in the unit cell 

p(r, s I , s2) - - p l ( r ,  s l ) + P 2 ( r ,  s2) 

T ( S l ,  $2) = E E Tjk(Sl ,  S2) 
) k 
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The translation function presented as Fourier series 

T(sl, s2) = V -1 y~ Y~AH1AH2 exp(--2rciHlsl) 
H1 H2 

× exp(-27riH2s2) 

with coefficients 

AH,,H 2 = Y~ ~ Y~ F2obs(h)Fl(h[Rj])F~(h[Rk]) 
j k h 

× exp(2yrihdg) exp(-2rrihdk) 

+ Y~ Y~ Y~ FZobs(h)F2(h[Rj])F;(h[Rk]) 
j k h 

× exp(2zcihdg) exp(-2rrihdk) 

+ 2 y~ y~ y~ F2obs(h)F,(h[Rj])F~(h[ek]) 
j k h 

X exp(27rihdj) exp(-27rihdk) 

where summation in the first term is over those h for 
which H1 = h([Rk] - [Rj]) and/-/2 = 0, summation in the 
second term is over those h for which H1 = 0 and/-/2 = 
h([Rk] - [Rj.]), summation in the third term is over those 
h for which H1 = -h[Rj] and 1-12 = h[Rk]. 

(c) The translation function for two independent 
models when one model is fixed 

T(s) = V -l y~ A H exp(-27riHs) 
H 

with coefficients 

A g = Y~ Y~ Y~ FZobs(h)F,(h[Rj])FT(h[Rk]) 
j k h 

× exp(27rihdj) exp(-27rihdk) 

+ 2 y~ y~ y~ F2bs(h)Fl(h[Rj])F~(h[Rk]) 
j k h 

× exp(27rihdj) exp(-2~rihdk) 

where summation in the first term is over those h for 
which H = h([Rl,] - [Rj]), summation in the second term 
is over those h for which H = -h[Rj]. 

(d) The packing function is an overlapping function of  
electron densities for the symmetry-related models. The 
equations are analogous to those for the translation 
function 

Q(s)  - - Y~ Y~ f pj(r, s ) p , ( r ,  s)dr 
j¢k 

or as Fourier series 

Q(s) = V -1 Y~ A H exp(-2zriHs) 
H 

with coefficients 

A n = - y~ y~. y~ F(h[Rj])F*(h[R,])exp(27rihdj) 
jek h 

X exp(-27rihdk) 

where summation is over those h for which H = h([Rk] - 
[Rj]). 
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